首页> 外文OA文献 >Gaussian filtering and variational approximations for Bayesian smoothing in continuous-discrete stochastic dynamic systems
【2h】

Gaussian filtering and variational approximations for Bayesian smoothing in continuous-discrete stochastic dynamic systems

机译:贝叶斯平滑的高斯滤波和变分近似   在连续离散随机动力系统中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Bayesian smoothing equations are generally intractable for systemsdescribed by nonlinear stochastic differential equations and discrete-timemeasurements. Gaussian approximations are a computationally efficient way toapproximate the true smoothing distribution. In this work, we present acomparison between two Gaussian approximation methods. The Gaussian filteringbased Gaussian smoother uses a Gaussian approximation for the filteringdistribution to form an approximation for the smoothing distribution. Thevariational Gaussian smoother is based on minimizing the Kullback-Leiblerdivergence of the approximate smoothing distribution with respect to the truedistribution. The results suggest that for highly nonlinear systems, thevariational Gaussian smoother can be used to iteratively improve the Gaussianfiltering based smoothing solution. We also present linearization andsigma-point methods to approximate the intractable Gaussian expectations in theVariational Gaussian smoothing equations. In addition, we extend thevariational Gaussian smoother for certain class of systems with singulardiffusion matrix.
机译:对于由非线性随机微分方程和离散时间测量描述的系统,贝叶斯平滑方程通常是棘手的。高斯近似是一种计算有效的方法,可以近似真实的平滑分布。在这项工作中,我们将比较两种高斯近似方法。基于高斯滤波的高斯平滑器对滤波分布使用高斯近似,以形成平滑分布的近似。变异高斯平滑器基于最小化相对于真实分布的近似平滑分布的Kullback-Leibler散度。结果表明,对于高度非线性的系统,可以使用变分高斯平滑器来迭代地改进基于高斯滤波的平滑解决方案。我们还提出了线性化和西格玛点方法来近似变分高斯平滑方程中的难解的高斯期望。此外,我们将一类具有奇异扩散矩阵的系统的变分高斯平滑器扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号